- 1. В идеальном колебательном контуре, состоящем из последовательно соединенных конденсатора и катушки с индуктивностью L=20 мГн, происходят свободные электромагнитные колебания с периодом T. Если амплитудное значение силы тока в контуре $I_{\rm max}=1$ A, то энергия $W_{\rm L}$ магнитного поля катушки в момент времени t=T/8 от момента начала колебаний (подключения катушки к заряженному конденсатору) равна ... мДж.
- **2.** В идеальном колебательном контуре, состоящем из последовательно соединенных конденсатора с электроёмкостью C=4,0 мкФ и катушки индуктивности, происходят свободные электромагнитные колебания с периодом T. Если конденсатор был заряжен до напряжения $U_0=8,0$ В и подключен к катушке индуктивности, то энергия $W_{\rm C}$ электрического поля конденсатора в момент времени t=T/12 от момента начала колебаний равна ... мкДж.
- **3.** В идеальном колебательном контуре, состоящем из последовательно соединенных конденсатора и катушки с индуктивностью $L=16,0\,$ мГн, происходят свободные электромагнитные колебания с периодом T. Если амплитудное значение силы тока в контуре $I_{\rm max}=250\,$ мА, то энергия $W_{\rm L}$ магнитного поля катушки в момент времени t=T/12 от момента начала колебаний (подключения катушки к заряженному конденсатору) равна ... мкДж.
- **4.** Троллейбус массой m=11 т движется по горизонтальному участку дороги прямолинейно и равномерно со скоростью, модуль которой $\upsilon=36$ $\frac{\mathrm{KM}}{\mathrm{q}}$. Отношение модулей силы сопротивления движению и силы тяжести, действующих на троллейбус, $\frac{F}{mg}=0.011$. Если напряжение на двигателе троллейбуса U=550 В, а коэффициент полезного действия двигателя $\eta=81$ %, то сила тока I в двигателе равна ... А.
- **5.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, происходят свободные электромагнитные колебания с частотой $v = 250 \, \Gamma$ ц. Если максимальное напряжение на конденсаторе $U_0 = 1,0 \, \text{B}$, а максимальная сила тока в катушке $I_0 = 78,5 \, \text{мA}$, то чему равна ёмкость C конденсатора равна? Ответ приведите в микрофарадах.
- **6.** В идеальном колебательном контуре, состоящем из конденсатора емкостью C=10 нФ и катушки индуктивности, происходят свободные электромагнитные колебания с частотой v=8,2 кГц. Если максимальная сила тока в катушке $I_0=50$ мА, то сему равно максимальное напряжение U_0 на конденсаторе? Ответ приведите в вольтах.
- 7. В идеальном LC-контуре, состоящем из катушки индуктивности $L=27~{\rm M}\Gamma$ н и конденсатора емкостью $C=0,50~{\rm M}{\rm K}\Phi$, происходят свободные электромагнитные колебания. Если полная энергия контура $W=54~{\rm M}{\rm K}Д$ ж, то в момент времени, когда заряд конденсатора $q=4,5~{\rm M}{\rm K}K$ л, сила тока I в катушке равна ... мА.
- **8.** В идеальном LC-контуре происходят свободные электромагнитные колебания. Полная энергия контура W=64 мкДж. В момент времени, когда сила тока в катушке I=10 мА, заряд конденсатора q=2.1 мкКл. Если индуктивность катушки L=20 мГн, то емкость C конденсатора равна ... нФ.
- 9. В идеальном LC-контуре, состоящем из катушки индуктивности $L=20~{\rm M}\Gamma$ н и конденсатора емкостью $C=0,22~{\rm M}{\rm K}\Phi$, происходят свободные электромагнитные колебания. Если в момент времени, когда сила тока в катушке $I=40~{\rm M}{\rm A}$, напряжение на конденсаторе $U=10~{\rm B}$, то полная энергия контура равна ... мкДж.
- 10. В идеальном LC-контуре происходят свободные электромагнитные колебания. Полная энергия контура $W=58\,$ мкДж. В момент времени, когда сила тока в катушке $I=65\,$ мА, напряжение на конденсаторе $U=11\,$ В. Если емкость конденсатора $C=0,40\,$ мк Φ то индуктивность L катушки равна ... м Γ н.

- 11. В идеальном LC-контуре, состоящем из катушки индуктивности $L=80~{\rm M}\Gamma$ н и конденсатора емкостью $C=0,60~{\rm M}{\rm K}\Phi$, происходят свободные электромагнитные колебания. Если полная энергия контура $W=66~{\rm M}{\rm K}Д{\rm ж}$, то в момент времени, когда напряжение на конденсаторе $U=10~{\rm B}$, сила тока I в катушке равна ... мА.
- **12.** В идеальном колебательном контуре происходят свободные электромагнитные колебания. Амплитудное значение напряжения на конденсаторе $U_0 = 20~\mathrm{B}$, а амплитудное значение силы тока в контуре $I_0 = 25~\mathrm{mA}$. Если электроёмкость конденсатора $C = 5,0~\mathrm{mk\Phi}$, то период T колебаний в контуре равен ... **мс**.
- **13.** В идеальном колебательном контуре происходят свободные электромагнитные колебания. Амплитудное значение напряжения на конденсаторе U_0 = 1,9 B, а амплитудное значение силы тока в контуре I_0 = 30 мА. Если электроёмкость конденсатора C = 0,25 мкФ, то частота v колебаний в контуре равна ... к Γ ц.
- **14.** В идеальном LC-контуре, состоящем из катушки индуктивностью L=25 мГн и конденсатора ёмкостью C=0,90 мкФ, происходят свободные электромагнитные колебания. Если максимальная сила тока в катушке $I_0=80$ мА, то максимальный заряд q_0 конденсатора равен ... мкКл.
- **15.** В идеальном LC-контуре, состоящем из катушки индуктивностью L=40 мГн и конденсатора ёмкостью C=0,36 мкФ, происходят свободные электромагнитные колебания. Если максимальный заряд конденсатора $q_0=6,0$ мкКл, то максимальная сила тока I_0 в катушке равна ... мА.
- **16.** В идеальном колебательном контуре происходят свободные электромагнитные колебания. Амплитудное значение заряда конденсатора $q_0 = 44$ мкКл, а амплитудное значение силы тока в контуре $I_0 = 12$ мА. Период &T колебаний в контуре равен ... мс.
- **17.** В идеальном колебательном контуре происходят свободные электромагнитные колебания. Амплитудное значение напряжения на конденсаторе U_0 = 1,9 B, а амплитудное значение силы тока в контуре I_0 = 60 мА. Если электроёмкость конденсатора C = 0,25 мкФ, то частота v колебаний в контуре равна ... к Γ ц.
- **18.** В идеальном колебательном контуре происходят свободные электромагнитные колебания. Амплитудное значение заряда конденсатора $q_0 = 60$ мкКл, а амплитудное значение силы тока в контуре $I_0 = 25$ мА. Период &T колебаний в контуре равен ... мс.
- **19.** В идеальном LC-контуре, состоящем из катушки индуктивностью L=80 мГн и конденсатора ёмкостью C=0,32 мкФ, происходят свободные электромагнитные колебания. Если максимальная сила тока в катушке $I_0=75$ мА, то максимальный заряд q_0 конденсатора равен ... мкКл.
- **20.** В идеальном LC-контуре происходят свободные электромагнитные колебания. Максимальный заряд конденсатора $q_0 = 0.90$ мкКл, максимальная сила тока в катушке $I_0 = 30$ мА. Если индуктивность катушки L = 25 мГн, то ёмкость C конденсатора равна ... нФ.
- **21.** В идеальном LC-контуре происходят свободные электромагнитные колебания. Максимальное напряжение на конденсаторе контура $U_0 = 3.0$ В, максимальная сила тока в катушке $I_0 = 1.2$ мА. Если индуктивность катушки L = 75 мГн, то ёмкость C конденсатора равна ... нФ.
- **22.** Идеальный колебательный контур состоит из конденсатора электроёмкостью C=150 мкФ и катушки индуктивностью L=1,03 Гн. В начальный момент времени ключ K разомкнут, а конденсатор заряжен (см. рис.). После замыкания ключа заряд конденсатора уменьшится в два раза через минимальный промежуток времени Δt , равный ... мс.

- **23.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0.20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1.0\cdot 10^4~\frac{\mathrm{pag}}{c}$, то ёмкость C конденсатора равна ... мк Φ .
- **24.** В идеальном колебательном контуре, состоящем из катушки и конденсатора, ёмкость которого C=50 мкФ, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1,0\cdot 10^3~\frac{\mathrm{pag}}{\mathrm{c}}$, то индуктивность L катушки равна ... мГн.